1:33 PM
Last name:
First name:
BU or BG:

Problem 1 (5 points). For the differential equation, $x^{\prime}=x^{4}-x^{2}$, find all equilibrium solutions and determine whether they are sinks, sources, or neither. Also sketch the phase line.

Problem 2 (5 points). The family of differential equations $x^{\prime}=x^{3}-x+a$ depends on a parameter a. Sketch the corresponding bifurcation diagrams.

Problem 3 (5 points). Consider the differential equation $x^{\prime}=f(t, x)$, where $f(t, x)$ is continuously differentiable in t and x . Suppose that $f(t+T, x)=f(t, x)$ for all t and x. Suppose there are constants p and q such that $p<q$ and $f(t, p)>0$ and $f(t, q)<0$ for all t. Prove that there is a periodic solution $x(t)$ for this equation with $p<x(0)<q$.

Problem 4 (5 points). Solve the initial value problem
$x_{1}^{\prime}=-x_{1}+x_{3}$
$x_{1}(0)=1$
$x_{2}^{\prime}=-x_{2}-x_{3}$
$x_{2}(0)=-1$
$x_{3}^{\prime}=-x_{3}$
$x_{3}(0)=2$

Problem 5 (5 points). Solve the initial value problem
$x_{1}^{\prime}=x_{1}+2 x_{2}$
$x_{1}(0)=1$
$x_{2}^{\prime}=-2 x_{1}+x_{2}$
$x_{2}(0)=2$

